

How to Bin Numeric Variables in IBM SPSS Statistics

Transforming a Numeric Variable

Age of respondent Ν Valid 2828 Missing 4 Mean 45.56 Median 42.00 17.100 Std. Deviation Range 71 Minimum 18 Maximum 89

Statistics

We want to create a new grouped variable and keep the original numeric variable

Age of respondent (Binned)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	<= 24	242	8.5	8.6	8.6
	25 - 34	627	22.1	22.2	30.7
	35 - 44	679	24.0	24.0	54.7
	45 - 54	481	17.0	17.0	71.7
	55 - 64	320	11.3	11.3	83.1
	65+	479	16.9	16.9	100.0
	Total	2828	99.9	100.0	
Missing	NA	4	.1		
Total		2832	100.0		

Visual Binning

- 1. Open your dataset in SPSS.
- 2. Go to Transform > Visual Binning.
- 3. Select the numeric variable you want to bin and click Continue.
- 4. Name the new binned variable in **Binned Variable** box.
- 5. Now click the **Make Cutpoints** button.
- 6. Choose the method to create cut points (e.g., equal width, equal percentiles).
- 7. Define cutpoints and click **Apply**.
- 8. Click Make Labels and click OK.
- 9. The new categorical variable will appear in your dataset.

ta Visual Binning		×			
Scanned Variable List:	Name:	Label:			
🛷 age	Current Variable: age	Age of respondent			
	Binned Variable: age groups	Age of respondent (Binned)			
	Minimum: 18 N	Ionmissing Values Maximum: 89			
18.00 23.46 28.92 34.38 39.85 45.31 50.77 56.23 61.69 67.15 72.62 78.08 83.					
	Enter interval cutpoints or click Make Cutpoints for automatic intervals. A cutpoint value of 10, for example, defines an interval starting above the previous interval and ending at 10.				
Cases Scanned: 2832	Value	Label Upper Endpoints			
Missing Values: 4		Included (<=)			
		O <u>E</u> xcluded (<)			
Copy Bins		Make Cutpoints			
<u>F</u> rom Another Variable		Make Labels			
To Other Variables		Reverse scale			
	OK Paste Reset	Cancel Help			

	First Cutpoint Location:	
	Ensi Culpoint Location.	24
	Number of Cutpoints:	5
	Width:	10
	Last Cutpoint Location:	64
OE	qual Percentiles Based	on Scanned Cases
	Intervals - fill in either fie	ld
	Number of Cutpoints:	
	Width(%):	
0	utpoints at Mean and S	elected Standard Deviations Based on Scanned Cas
	+/- 1 Std. Deviation	
-	+/- 2 Std. Deviation	

Why Visual Binning is the Best Option

- Labels are created automatically.
- New variable created in your data.

ᄓ Value Labels			×
<u>V</u> alue Labels:			Spelling
Value -		Label	
1		<= 24	
2		25 - 34	\times
3		35 - 44	
4		45 - 54	
5		55 - 64	
6		65+	
98		DK	
99		NA	
	OK	Reset Cancel Help	

Age of respondent (Binned)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	<= 24	242	8.5	8.6	8.6
	25 - 34	627	22.1	22.2	30.7
	35 - 44	679	24.0	24.0	54.7
	45 - 54	481	17.0	17.0	71.7
	55 - 64	320	11.3	11.3	83.1
	65+	479	16.9	16.9	100.0
	Total	2828	99.9	100.0	
Missing	NA	4	.1		
Total		2832	100.0		

Tips and Best Practices

- 1. Verify the new variable by checking the frequencies and distributions.
- 2. You can place multiple variables into Visual Binning and create different splits.
- 3. Have a clear rationale for the splits (e.g., we are splitting age to match the groupings that we use in our monthly reports).
- 4. Document the binning process for reproducibility.
- 5. Use Paste to save syntax so that you save splits.
- 6. Consider the impact of binning on your analysis and results.

